Intramedullary Hip Screw (IMHS) for the Treatment of Intertrochanteric Hip Fracture: A Retrospective Study

Sunyar Niempoog, Sukanis Chumchuen, Chayanin Anghthong and Krit Boontanapibul

Department of Orthopaedic Surgery, Faculty of Medicine, Thammasat University, 99 Moo 18, Klong Nueng, Khlong Luang, Pathumthani, 12120, Thailand, sunyar@hotmail.com (Sunyar Niempoog), sukanis@hotmail.com (Sukanis Chumchuen), chatthara@yahoo.com (Chayanin Anghthong), krit.boontanapibul@gmail.com (Krit Boontanapibul)

*Corresponding Author: Sunyar Niempoog, PhD, Department of Orthopaedic Surgery, Faculty of Medicine, Thammasat University, 99 Moo 18, Klong Nueng, Khlong Luang, Pathumthani, 12120, Thailand

Citation: Intramedullary Hip Screw (IMHS) for the Treatment of Intertrochanteric Hip Fracture: A Retrospective Study. Am J Orth and Rhe. 2019; 2(1): 001-006.

Submitted: 15 June 2019; Approved: 19 June 2019; Published: 20 June 2019

Abstract

Intramedullary hip screw (IMHS) is a cephalomedullary nail used for surgical treatment of hip fracture for the past two decades but only a few studies have been reported. This study aims to evaluate the effectiveness of IMHS for intertrochanteric fracture. Ninety-two intertrochanteric fracture patients were retrospectively reviewed. Mean operative time was 87 minutes (45-154 min) with an average blood loss of 150 ml (50-300 ml). Intraoperative femoral shaft fracture was found in two cases which required the immediate exchange to long IMHS intraoperatively. One displaced large greater tuberosity fragment during nail insertion was treated by tension band wiring and five lateral cortex fractures were managed conservatively. Failed IMHS were found in 3 cases with two cases screw cut out the femoral head and one fracture extending from intertrochanter to the superior neck. All of these three cases were changed to hip prosthesis. Most of the patients stayed in the hospital for 3 weeks (61.4%), younger patients tend to have shorter hospital stay (<1 wk) and preexisting medical complications may prolong hospitalization (>1 mo.). From this study, IMSH can safely treat a hip fracture patient and its complications can be avoided by correct entry point, over-reaming and manually pushing the nail with use of a hammer and a centering

Keywords: Intramedullary Hip Screw; IMHS; Cephalomedullary Nail; Intertrochanteric Fracture; Hip Fracture

Introduction

"Hip fracture" is an important health problem, because the incidence is high and there is a high rate of morbidity and mortality. Death and financial cost after osteoporotic hip fracture in the elderly is a major health problem in Thailand. Mortality rate is about 18% during the first year after hip fracture. It is extremely high and is about 8 times higher than that in the age-adjusted general population [1]. In a study in Thailand, the incidence of hip fracture was up to 80% in patients aged over 70 years and occurred in 70% in women. In all men and women aged over 84 years the age-adjusted incidence of hip fracture had increased 2-fold from 657 per 100,000 per year in 1997 [2] to 1,239 per year in 2006 [3]. Men were found to be at an increased risk of dying compared to women. Studies show that Thai patients who do not receive surgery have almost double the risk of dying post hip fracture [4]. About half of the incidence of hip fracture is intertrochanteric fracture [5].

Intertrochanteric fracture treated by operation with internal fixation, results in more superior outcomes than nonoperative treatment [6]. Internal fastening is the standard treatment method for trochanteric fracture, developed from the pin, to sliding plate and interlocking nail.

Intramedullary hip screw (IMHS; Smith & Nephew Richards, Memphis, TN, USA) in Figure 1 is an intramedullary implant. During the past two decades, a study comparing intramedullary hip screw and sliding hip screw showed the biomechanical advantage of intramedullary hip screw in terms of stability, minimal surgical exposure and limited fracture collapse especially in reverse oblique fracture and subtrochanteric extension [7].

Cite this article: Intramedullary Hip Screw (IMHS) for the Treatment of Intertrochanteric Hip Fracture: A Retrospective Study. Am J Orth and Rhe. 2019; 2(1): 001-006.
Figure 1. Intramedullary hip screw (IMHS; Smith & Nephew, Richards, Memphis, Tennessee, USA)

Although IMHS has been available since 1998 and compared with other implants e.g. Gamma nail or Proximal femoral nail, only few studies have been reported in the literature.

The objective of this study is to evaluate the effectiveness of IMHS for intertrochanteric fracture and is designed as retrospective study.

Materials and Methods

Between January 2003 and August 2009 ninety two intertrochanteric fracture patients were treated by IMHS in Thammasat University Hospital (Level 1 Trauma Center). Clinical records and radiographs were reviewed. There were 43 males and 49 females with mean age 73.1 ± 18.4 years. There were 81 patients in low energy mechanism group with mean age 79.2 ± 10.9 years and 11 patients in high energy mechanism from traffic accident with mean age 31.1 ± 5.4 years as in Table 1.

Table 1: Patient demographic data

<table>
<thead>
<tr>
<th>Pt (n)</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M / F)</td>
<td>43 : 49</td>
</tr>
<tr>
<td>Mechanism (low/high)</td>
<td>81 : 11</td>
</tr>
<tr>
<td>Total mean age (years)</td>
<td>73.1 ± 18.4</td>
</tr>
<tr>
<td>Mean age in low mechanism (years)</td>
<td>79.2 ± 10.9</td>
</tr>
<tr>
<td>Mean age in high mechanism (years)</td>
<td>31.1 ± 5.4</td>
</tr>
<tr>
<td>Mobility score</td>
<td>7.5 ± 2.2</td>
</tr>
</tbody>
</table>

According to Evan fracture classification [8] in Figure 2, there were 21 patients in stable fracture and 71 patients with unstable fracture (there are 65 patients in Evan I unstable group, 3 patients in Evan II group and 3 patients in subtrochanteric extension group in Table 2).

Table 2: Patient characteristic according to Evan fracture classification

<table>
<thead>
<tr>
<th>Type</th>
<th>Evan I</th>
<th>Evan II</th>
<th>Subtrochanteric extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>21</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>Mobility score</td>
<td>3 75 3 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mobility score [9] is used to evaluate preoperative and postoperative functional status of the patients in Table 3.

Table 3: Assessment of Mobility score (Score is the total, 0 to 9)

<table>
<thead>
<tr>
<th>Mobility</th>
<th>No difficulty</th>
<th>With an aid</th>
<th>With help from another person</th>
<th>Not at all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to get about the house</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Able to get out of the house</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Able to go shopping</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

IMHS is a cannulated intramedullary nail which is anatomically designed with a 4° mediolateral bend and 2.0 meter radius of curvature to allow the insertion to the greater trochanter and reduce anterior cortex impingement. This nail is used with standard lag screw insert into femoral head and 4.5 mm distal lock diameter, lag screw can slide within a barrel enhance proximal fragment slide to distal fragment. Standard IMHS lag screw 135 angles are used in all cases and in three diameters (10 mm, 12 mm and 14 mm) and proximal diameter of 17.5 mm. Short nail is 21 cm in length allowing extension beyond subtrochanteric region. Long IMHS nails are available (32, 34, 36, 38, 40 cm) and are indicated in subtrochanteric fractures extended to femoral shaft.

Surgical Technique

After anesthesia, the patients are placed in a supine position on the fracture table. Distal femoral traction is performed on the affected side. We routinely use distal femoral traction because it is easy.
to perform reduction especially in a flexed proximal fragment which requires flexion of the distal to match with. Moreover, it can provide a rigid and stable reduction during operation.

The reduction is performed by adduction, slight traction by lengthening the fracture table arm and internal rotation by adjusting the angle of the distal femoral pin that connected with the fracture table. The patient’s trunk is tilted toward the unaffected side to allow access to the greater trochanter and stabilize the trunk. Intravenous antibiotic prophylaxis using Cefazolin 1 g is administered 30 min prior to operation in all patients.

A small incision is made over the tip of the greater trochanter. The awl is placed at the greater trochanter, the position of the entry point is confirmed by fluoroscope in AP and lateral view. The 3.2 mm guide wire is passed from the tip of the greater trochanter to the femoral canal. The entry point is enlarged by an 11 mm cannulated drill. Then the femoral canal is reamed with a flexible reamer. The proximal part of the femur is reamed to 17 mm to accommodate the proximal nail diameter. The nail is inserted by hand without using a hammer. Once the nail is seated, the targeting device is used to insert a guide pin is advanced into the femoral head through a stab incision. Correct length of pin is measured. The screw is placed in both center of the head or slightly inferiorly within 5 to 10 mm of the subchondral border. Distal locking screws are placed through the sleeve that is attached to the radiolucent drill guide.

73 patients had received spinal anesthesia and 19 patients had received general anesthesia. All patients were operated on a fracture table and attempted closed reduction under fluoroscopic prior to skin incision being made. The aim is to place a lag screw position in the center of the femoral head and neck in both AP and lateral view and the tip of the lag screw within 5-10 mm from the subchondral bone. All patients have treated with IMHS lag screw 135 angles with different diameter according to their femoral canal size.

On the first day postoperation, all patients are ambulated by sitting bedside and encouraged to perform quadriceps muscle-strengthening exercises. Operative time, intraoperative blood loss, intraoperative and postoperative complications, length of hospital stay and follow up time are recorded.

After discharge, all patients are appointed in the outpatient’s clinic at 2 weeks, 6 weeks, 3 months, 6 months and 1 year. Routine postoperative wound care, radiographic evaluation were obtained. Functional status is evaluated using a mobility score at 1 year postoperative compared with preoperative status.

Results

The mean operative time was 87 minutes (45 to 154 min). The average blood loss was 150 ml (50 to 300 ml) in Table 4. The intraoperative complications were displaced fragment of greater trochanter during nail insertion in four cases but did not affect the stability in 3 cases. One case is displaced large fragment of greater tuberosity with 1 cm displacement during nail insertion treated by tension band wiring in Figure 3. Two femoral shaft fractures were treated by the immediate exchange to long IMHS intraoperatively. Five lateral cortex fractures were managed conservatively in Figure 4. Proximal screw dislodges in two cases were managed by reinserting the screw in Figure 5. Failed IMHS was found 3 cases, one in fractured intertrochanteric femur extending to superior neck in Figure 6. The hip screw cut out the femoral head in two cases in Figure 7, all of these change to the hip prosthesis and one of them had an infection which requires debridement with antibiotic beads prior to the hip prosthesis. There was one case of surgical site infection which require debridement and intravenous antibiotic. One persistent hip pain required NSAIDs and analgesia drugs and remove implant after fracture consolidation in Figure 8.

The common medical postoperative complications were delirium (13%), urinary tract infection (9.7%) and respiratory tract infection (3.2%). In our series, we did not find deep vein thrombosis. The frequency of the nail diameter in Figure 9 and the length of the lag screw in Figure 10 was recorded.

Most of the patients stayed in the hospital for 3 weeks (61.4%). The short period’s group (less than 1 week) were the young-aged patients and the longest group (more than 1 month) was 11.9 % with preexisting medical complications.

Anesthesia	General: 19, Regional: 73
Operative time (mean)	87 ± 14.2 min [45-154 min]
Blood loss Complication	152 ± 69.6 ml [50-300 ml]
	13 cases (displace greater tuberosity 4 cases, femoral shaft fracture 2 cases, Lateral cortex fracture 5 cases, proximal screw dislodge 2 cases)

Table 4 Perioperative data

Figure 3: Displacement of greater tuberosity during IMSH insertion treated by tension band wiring
Figure 4: Fracture of the lateral cortex (Arrow) during IMSH insertion.

Figure 6: Failure of IMSH in cervicotrochanteric fracture treated by total hip arthroplasty

Figure 7: Hip screw cut out during period of follow up

Figure 8: Hip pain from prominent IMSH: after removing the IMSH, the symptom disappeared.

Figure 9: Frequency of nail diameter

Figure 10: Frequency of length of lag screw

Discussion

Rising incidence of hip fracture in Thais [10] have been widely and acceptably treated with internal fixation in order to minimize fracture complication. This study has documented the ability of IMSH to treat hip fracture in Thais both stable and unstable fracture configurations, as in Figure 11. Common nail diameters are 10 and 12 mm and proximal screw size 85 mm in females and between 90-95 mm in males. Mean operative time is 87 min which is slightly higher than previous studies (67 and 71 min, Baumgaertner [11] and Hardy [12] respectively). Mean intraoperative blood loss is 152 ml which is lower than that recorded by Baumgaertner and Hardy (245 and 198 ml respectively). Prolonged operative time mostly occurred under recently-graduated orthopedist.
Figure 11: Good results for IMSH in the treatment of stable (A) and unstable (B) intertrochanteric fracture

From the current study, the intraoperative complication was mostly found in less experienced surgeons which can be preventable. Displaced fracture greater tuberosity or femoral shaft fracture can be caused by incorrect entry point in difficult obese patients or inadequate adduction push entry point laterally into the fracture site. Reaming using side-cut can cause additional fracture displacement and also unnecessary reaming of the lateral cortex. This common complication can be prevented by setting patient inadequate adduction and using sharp awl to precisely identify entry point and open the femoral canal with large front-cut reamer to prevent further fracture displacement or initially using a guide pin followed by a large cannulated drill to open the femoral canal in the same manner as the new generation of trochanteric nail. Femoral shaft fracture is usually caused by using a hammer while the distal nail end abuts against the medial cortex. Femoral shaft fracture can also be prevented by over-reaming 1.5-2 mm and manually inserting the nail, then holding the nail in abduction direction after the nail abuts against the medial cortex or by increasing femoral adduction which can easily be applied if using distal femoral traction.

Lateral cortex fracture can occur if the width and depth of reaming are inadequate and also hammering of centering sleeve is excessive. This can be prevented without using the hammer but carefully insert the nail under fluoroscopy. Dislodgement of the proximal screw was found in high fracture close to the cervicotrochanteric area making it difficult to obtain a good reduction, resulting in poor screw position and purchase of the screw. The anatomical reduction is the key and careful insertion of the nail.

Medical complication such as delirium, urinary tract infection and respiratory tract complication was found to be related with advanced age but no deep vein thrombosis was observed in any patients.

Length of hospital stay is related to age, associated injury, and complications. The majority of the patients were admitted for 1-2 weeks (34.7%) and 2-3 weeks (26.7%) as in Figure 12 with a median age of 81.6 years in these groups. From the current study, we found that the need for preoperative evaluation and postoperative rehabilitation were the main reasons for a prolonged hospital stay. Patients admitted for less than 1 week was 10.8% in young patients (mean age 39.9 years) without comorbidity and ambulatory problems. Lastly, patients admitted for more than a month was 11.9% usually having medical complications.

Figure 12: Length of hospital stay for intertrochanteric fracture patients in Thammasat University Hospital between 2003-2009

Most patients were followed-up between 2 weeks and 3 months in 23.68% cases, secondly 3-6 months in 13.16% and more than 12 months in 17.71%. The loss to follow-up reason was that the patient and relatives paid more attention to other medical conditions after the patient began partial weight-bearing ambulation, and chose to mainly follow-up chronic medical illness e.g. chronic renal disease, old ischemic stroke, heart disease and endocrine disease e.g. diabetes mellitus and dyslipidemia.

We found that patients who follow-up later than 3 months was only 31.31% due to difficulty in the transfer or different visiting dates in multiple departments which caused them to choose only the more problematic condition.

Figure 13: Last follow-up time of the patient with an intertrochanteric fracture of the femur in Thammasat University Hospital between 2003-2009

Patients following-up after more than 12 months, mostly did not come to follow-up hip fracture but because of a new or preexisting spinal stenosis or osteoarthritis of the knee.

Patients who could not follow-up within 2 weeks was 19.66% because of the need to return home in distant regions and convenience to follow-up at a nearby hospital or registered hospital.

The one-year mortality rate in the current study was 12 patients (13.04%) with a mean age of 94.6 years which is more than the mean age (75.9) by 18.7 years. Advanced age is related to mortality rate,
Comparability to a previous study [13].

Radiographic union was found to be 100% in patients who followed-up later than 3 months (55.43%). On the other hand, mobility score is evaluated by phone interview in patients who failed to follow-up (44.57%). Half of the patients (36 patients) were able to return to walking as their pre-injury status (Preoperative mobility score = Postoperative mobility score). Mobility score 7-9 recorded in 28 patients and mobility score 4-6 in 8 patients. Mean preoperative mobility score = 7.5 ± 2.2. Mean postoperative mobility score = 6.3 ± 2.9. Mean change score 1.2. No significant difference showed after analysis using a paired t-test, so IMSH can safely treat a patient who suffers from a hip fracture.

From the current study, we realized that a hip fracture patient was abandoned in order to treat underlying osteoporosis and the focus was only on medical comorbidity which resulted in the recurrent contralateral hip fracture in Figure 14. Physicians should emphatically explain and instruct (regarding the cause and risk of hip fracture) to all patients and their relatives to minimize hip fractures in the future.

Figure 14: Bilateral intertrochanteric fracture: the previous fracture was treated by Gamma nail.

In conclusion, IMSH is a choice of treatment for hip fracture in Thais with a satisfactory outcome, and complications can be avoided by locating the correct entry point, over-reaming and manually push the nail while using a hammer and a centering sleeve.

Acknowledgements

We thank Norman Mangnall for language editing.

References

Cite this article: Intramedullary Hip Screw (IMHS) for the Treatment of Intertrochanteric Hip Fracture: A Retrospective Study. Am J Orth and Rhe. 2019; 2(1): 001-006.